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The Kinetic Theory of Simple Reacting Spheres:
I. Global Existence Result in a Dilute-Gas Case

Jacek Polewczak1
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Existence of global-in-time, spatially inhomogeneous, and L1-renormalized solu-
tions is proven for the model of simple reacting spheres under the assumptions
that initially the system has a finite total mass, energy, and entropy.
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1. INTRODUCTION

The kinetic theory of simple reacting spheres (SRS) had been proposed by
Marron(1) and further developed by Xystris and Dahler.(2) In the model the
molecules behave as if they were single mass points with two internal states
of excitation. Collisions may alter the internal states (this occurs when the
kinetic energy associated with the reactive motion exceeds the activation
energy) but can not transfer mass from one molecule to another. Reactive
and non-reactive collision events are considered to be hard spheres-like.
I start by considering a four component mixture A, B, A*, B*, and the
chemical reaction of the type

A+B # A*+B* (1.1)
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Here, A* and B* are the distinct species from A and B. In the paper I use
the indices 1, 2, 3, and 4 for the particles A, B, A*, and B*, respectively.
I assume no net mass transfer in reactive collisions; this implies m1=m3

and m2=m4 , where mi denotes the mass of the i th particle, i=1,..., 4.
Reactions take place when the reactive particles are separated by a distance
_12= 1

2(d1+d2), where d i denotes the diameter of the i th particle. Since in
the SRS model reactions do not change diameters of the particles, d1=d3

and d2=d4 . The last set of equalities also implies that _34= 1
2 (d3+d4)=

_12 . I note that by not allowing the hard sphere diameter to change upon
reaction one avoids complications of producing overlapping configurations
(see, ref. 3).

In contrast to some more advanced models of chemical reactions
considered in the literature (see e.g., the references in ref. 1 for multiply
reacting rigid spheres (MIRS) models), internal degrees variables do not
appear explicitly in the collisional integrals of the kinetic equation based on
the SRS model. The SRS, being a natural extension of the hard-sphere
collisional model, reduces itself to the Enskog theory when the chemical reac-
tions are turned off. Furthermore, in the dilute-gas limit it provides an interest-
ing kinetic model of chemical reactions that has not been considered before.

In a series of papers C. P. Gru� nfeld and E. Georgescu(4, 5) consider a
general class of Boltzmann-like kinetic equations with multiple inelastic
collisions, where they prove existence and uniqueness of vacuum-type solu-
tions for small initial data. M. Groppi, A. Rossani, and G. Spiga in refs. 6
and 7 formally analyze various kinetic theories of chemically reacting gases,
including gas-photon interactions. They show existence of an H-function
and described possible equilibrium solutions. Their results are based on the
micro-reversibility conditions that relate the differential cross-section scat-
tering kernels before and after reactive collisions. In the case of SRS,
however, the reacting molecules behave like hard spheres before and after
reactive collisions. Thus, the micro-reversibility conditions reduce them-
selves to the symmetries of the separation distances _12=_34 and the steric
factors ; ij=; ji (see, (2.11)�(2.12)).

After introducing a general model in Section 2, I consider, in Sec-
tion 3, important physical properties of the dilute SRS kinetic equations.
They will play a fundamental role in proving existence of renormalized
solutions (see, ref. 8 for a single specie Boltzmann equation), global in time,
and under the assumptions that, initially, the system has a finite total mass,
energy, and entropy. Section 4 contains the existence result and its proof.
This is the first part of a series of papers on kinetic equations of simple
reacting spheres. The rigorous results concerning asymptotical behavior,
convergence to equilibrium, passage to hydrodynamics, and the case of the
dense-gas SRS kinetic equations will appear in forthcoming papers.
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2. THE SRS KINETIC SYSTEM

Following ref. 9, for each i (i=1,..., 4), fi (t, x, v) denotes the one-par-
ticle distribution function of the ith component of the reactive mixture. The
function fi (t, x, v), which changes in time due to free streaming and colli-
sions (both elastic and reactive), represents at time t the number density of
particles at point x with velocity v.

In the case of elastic encounters between a pair of particles from
species i and s, the initial velocities v, w take post-collisional values

v$=v&2
+is

mi
=(=, v&w) , w$=w+2

+is

ms
=(=, v&w) (2.1)

Here, ( } , } ) is the inner product in R3, = is a vector along the line passing
through the centers of the spheres at the moment of impact, i.e., = # S2

+=
[= # R3 : |=|=1, (=, v&w)�0]. Also, + is=mims �(mi+ms) is the reduced
mass of the colliding pair, where mi and ms are the masses of particles from
ith and s th species, respectively.

Finally, let us note that conditions m1=m3 and m2=m4 imply
+12=+34 . This property is crucial to prove the main results in this work.

For the reactive collision between particles of species i and s to occur
(i, s=1,..., 4), the kinetic energy associated with the relative motion along
the line of centers must exceed the activation energy #i (defined below),

1
2 +is((=, v&w) )2�#i (2.2)

with = having the same meaning as above. In the case of the reaction
A+B � A*+B* the velocities v, w take their post-reactive values

v�=v&
+12

m1

=[(=, v&w) &:&], w�=w+
+12

m2

=[(=, v&w)&:&]

(2.3)

with :&=- ((=, v&w) )2&2Eabs �+12 and, Eabs , the energy absorbed by
the internal degrees of freedom. The absorbed energy Eabs has the property

Eabs=E3+E4&E1&E2>0 (2.4)

where Ei>0, i=1,..., 4, is the energy of i th particle associated with its
internal degrees of freedom.

Now, in order to complete the definition of the model, the activation
energies #1 , #2 for A and B are chosen to satisfy #1�Eabs>0, and by sym-
metry, #2=#1 .
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For the inverse reaction, A*+B* � A+B, the post-reactive velocities
are given by

v-=v&
+34

m3

=[(=, v&w) &:+], w-=w+
+34

m4

=[(=, v&w)&:+]

(2.5)

with :+=- ((=, v&w) )2+2Eabs �+34 , and the activation energies for A*
and B*, #3=#1&Eabs and, as before, #4=#3 .

The pairs of velocities in (2.3) and (2.5) satisfy conservation of the
momentum

m1v+m2 w=m1 v�+m2w�=m3v�+m4w�

(2.6)
m3v+m4 w=m3 v-+m4w-=m1v-+m2w-

they do not, however, obey conservation of the kinetic energy. A part of
kinetic energy is exchanged with the energy absorbed by the internal states.
The following equalities hold:

m1v2+m2w2=m1v�2+m2w�2+2Eabs=m3v�2+m4w-2+2Eabs
(2.7)

m3v2+m4w2=m3v-2+m4w-2&2Eabs=m1v�2+m2w-2&2Eabs

Also, it is easy to show that the relatives velocities before and after reac-
tions, i.e., V=v&w, V �=v�&w�, and V -=v-&w-, respectively, satisfy
the identities

V �2=V 2&
2Eabs

+12

, V -2=V 2+
2Eabs

+34

(2.8)

Finally, the reactive collisions A+B # A*+B* can be also represented in
the form i+ j � k+l, where the set of indices (i, j, k, l ) can be enumerated:

(1, 2, 3, 4), (2, 1, 4, 3), (3, 4, 1, 2), (4, 3, 2, 1) (2.9)

Now, for i=1,..., 4, the SRS kinetic system can be expressed as follows

�fi

�t
+v

�f i

�x
=J E

i +J R
i (2.10)
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with

J E
i = :

4

s=1 {_2
is ||

R3_S2

[ f (2)
is (t, x, v$, x&_is=, w$)

& f (2)
is (t, x, v, x+_is =, w)] 3((=, v&w)(=, v&w)d= dw=

&;ij_2
ij ||

R3_S2

[ f (2)
ij (t, x, v$, x&_ij=, w$)& f (2)

ij (t, x, v, x+_ij=, w)]

_3((=, v&w)&1ij )(=, v&w) d= dw (2.11)

and

J R
i =;ij_2

ij ||
R3_S2

[ f (2)
kl (t, x, vx

ij , x&_ ij=, wx

ij )& f (2)
ij (t, x, v, x+_ ij=, w)]

_3((=, v&w)&1ij )(=, v&w) d= dw (2.12)

Here, the function f (2)
is approximates the density of pairs of particles in

collisional configurations, 0�;ij<1 is the steric factor for reactive colli-
sions between species i and j, 1ij=- 2#i �+ ij , and 3 is the Heaviside step
function. The prime velocities in (2.11) are given in (2.1). The pair of
velocities (vx

i , vx

j ) refers to post-reactive velocities described either in (2.3)
or (2.5), i.e., (vx

ij , wx

ij )=(v�, w�) for i, j=1, 2, and (vx

ij , wx

ij )=(v-, w-) for
i, j=3, 4. Also, the index pairs (i, j) and (k, l ) appearing in (2.11)�(2.12)
are associated with the set of indices (i, j, k, l ) specified in (2.9).

The first term of (2.11) is a hard-spheres collision operator with the
usual pre-collisional range of integration, while the second term of (2.11)
singles out those pre-collisional states that are energetic enough to result in
reaction. The collision operator in (2.12) is purely reactive.

When the steric factors ;ij=0, i.e., there are no reactive collisions, and
f (2)

is is the exact two-particle distribution function, system (2.10)�(2.12)
becomes the exact first BBGKY hierarchy system for a four component
hard-spheres mixture (with the diameters and masses satisfying d1=d3 ,
d2=d4 and m1=m3 , m2=m4 , respectively). As in the kinetic theory
of non-reactive mixtures, different ways in which one approximates
the two-particle distribution function f (2)

ij give rise to different kinetic
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equations. For this purpose it is convenient to write f (2)
ij in form of the

closure relation

f (2)
ij (t, x, v, y, w)=Yij (t, x, v, y, w | [4i f i ]) fi (t, x, v) f j (t, y, w) (2.13)

where Yij is assumed to be given, for each i and j and for each fixed t�0,
4=(41 , 42 , 43 , 44) is an (possibly nonlinear) operator acting on
( f1 , f2 , f3 , f4), typically through one or more velocity moments, In ref. 10
various forms of 4 and the resulting kinetic equations were considered. For
example, in the case of the revised Enskog system for non-reactive mixtures
(see, refs. 11 and 12) Yij=Y RET

ij has the form

YRET
ij = g (2)

ij (x1 , x2 | [ni (t, } )]) (2.14)

where ni (t, x)=�R3 f i (t, x, v) dv is the local number density of the compo-
nent i and g(2)

ij is the pair correlation function for a non-uniform system at
equilibrium with the local densities ni (t, x). The notation g (2)

ij (x1 , x2 |
[ni (t, } )]) indicates that g (2)

ij is a functional of the local densities ni .
In this work, I will be concerned only with the dilute-gas limit of the

system (2.10)�(2.12). Formally at least, one can show that when _ij � 0,
ni � 0, with ni_2

ij � const{0 and ni_3
ij � 0, then g (2)

ij � 1 in (2.14). Another
(more ad hoc) way to obtain the system of reactive kinetic equations for
dilute-gas regime is to take Yij#1, for i=1,..., 4 and assume that the
change of fi (t, x, v) over a length _ij , for arbitrary t and v, is negligible
(resulting in fi (t, x, v)r fi (t, x+_ij=, v)).

Let us notice that in the dilute-gas limit the system (2.10)�(2.12), with
;ij=0 (no reactive collisions), becomes the Boltzmann system for hard-
spheres mixture. This fact becomes even more important if one realizes that
the cross sections of gas phase reactions are usually smaller as compared
to the non-reactive collisions. This way the reactive collision terms can be
considered as perturbative corrections to non-reactive collisional terms.

3. PROPERTIES OF THE DILUTE SRS KINETIC SYSTEM

The main result of this work is the global existence theorem for the
dilute-gas system

�fi

�t
+v

�f i

�x
=J E

i +J R
i , fi (0, x, v)= f i0(x, v), i=1,..., 4, (x, v) # 0_R3

(3.1)
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with

J E
i = :

4

s=1
{_2

is ||
R 3_S2

[ f i (t, x, v$) fs(t, x, w$)& f i (t, x, v) fs(t, x, w)]

_3((=, v&w) )(=, v&w) d= dw=
&;ij_2

ij ||
R 3_S2

[ fi (t, x, v$) fs(t, x, w$)& fi (t, x, v) fs(t, x, w)]

_3((=, v&w) &1ij )(=, v&w) d= dw (3.2)

and

J R
i =;ij _2

ij ||
R3_S2

[ fk(t, x, vx
ij ) fl (t, x, wx

ij )& f i (t, x, v) f j (t, x, w)]

_3((=, v&w) &1ij )(=, v&w) d= dw (3.3)

where fi0 , i=1,..., 4 are suitable nonnegative initial conditions that will be
defined later. The gas mixture is confined in 0/R3. I consider two choices
for the set 0: , 0=R3, or 0 being a 3-dimensional torus [0, L]3, L>0.
The latter choice corresponds to case of the periodic boundary conditions
on [0, L]3.

The following properties of (3.1)�(3.3) are crucial in proving the exist-
ence result.

Proposition 3.1. Assume that ;ij=;ji for (i, j) # [(1, 2), (2, 1),
(3, 4), (4, 3)]. Then for ,i measurable on 0_R3 and f i # C0(0_R3),
i=1,..., 4,

:
4

i=1
|

R 3
,i J E

i dv= :
4

i=1

:
4

s=1

_2
is |||

R3_R 3_S2

[, i (x, v)+,s(x, w)

&, i (x, v$)&,s(x, w$)][ fi (v$) fs(w$)& f i (v) fs(w)]

_3((=, v&w) )(=, v&w) 5is d= dw dv (3.4)

:
4

i=1
|

R 3
,iJ R

i dv= |||
R3_R 3_S2

[;12_2
12 ,1(x, v)+;21_2

21,2(x, w)

&;34_2
34,3(x, v�)&;43_2

43,4(x, w�)]

_[ f3(x, v�) f4(x, w�)& f1(x, v) f2(x, w)]

_3((=, v&w) &112)(=, v&w) d= dw dv (3.5)
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and

:
4

i=1
|

R 3
,iJ R

i dv= |||
R3_R3_S2

[;34_2
34,3(x, v)+;43_2

43,4(x, w)

&;12_2
12,1(x, v-)&;21_2

21,2(x, w-)]

_[ f1(x, v-) f2(x, w-)& f3(x, v) f4(x, w)]

_3((=, v&w)&134)(=, v&w) d= dw dv (3.6)

where Xis , appearing in (3.4), is given by

1
23((=, v&w)&1is)+ 1

2 (1&;is) 3(1is&(=, v&w) ), if (i, s) # I
5is={ 1

43((=, v&w) ), if i=s (3.7)
1
23((=, v&w) ), otherwise

with I=[(1, 2), (2, 1), (3, 4), (4, 3)].
The post-collisional velocities, v$ and w$ are given in (2.1), while the

post-reactive velocities, v�, w� and v-, w-, are given in (2.3) anal (2.5),
respectively.

Proof. The proof of (3.4) is standard, see, for example, ref. 13 for
single specie treatment. The proof for mixture gases is similar: it is based
on the fact that the absolute value of the Jacobians of the transformations
(v, w) [ (v$, w$) and (v, w) [ (w, v) are one, together with the identity
(=, v&w) =( &=, w&v). The change of variables, (v, w) [ (v$, w$),
(v, w) [ (w, v), and = [ &=, together with the fact that ;is=;si , results in
(3.4). The multiplicative factor Xis comes from the fact that second term of
the non-reactive collisional integral (3.2), with ; ij in front of it, singles out
those pre-collisional states that are energetic enough to result in the reac-
tion, and thus preventing double counting of the events in the collisional
integrals (3.2)�(3.3).

In order to prove (3.5) and (3.6) one needs the following lemma.

Lemma 3.1. For fixed =, the Jacobians of the transforma-
tions (v, w) [ (v-, w-) and (v, w) [ (v�, w�) are given by (=, v&w)�:+

and (=, v&w)�:&, respectively. Furthermore, (=, v-&w-)=:+ and
(=, v�&w�)=:&.

Proof of Lemma 3.1. If J(v-, w-; v, w) and J(G-
34 , V -; G43 , V )

denote the Jacobians of the transformations (v, w) [ (v-, w-) and (G34 , V )
[ (G-

34 , V -), respectively, where
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G34(v, w)=m3v+m4w, (the velocity of the center of mass before
reaction)

V(v, w)=v&w, the relative velocity before reaction)
(3.8)

G-
34(v-, w-)=m3v-+m4w-, (the velocity of the center of mass

after reaction)

V -(v-, w-)=v-&w-, (the relative velocity after reaction)

then the following equality holds

J(v-, w-; v, w)=J(v-, w-; G-
34 , V -) J(G-

34 , V -; G34 , V ) J(G34 , V; v, w)

=J(G-
34 , V -; G34 , V ) (3.9)

Note that J(v-, w-; G-
34 , V -)=1�J(G34 , V; v, w). Next, the conservation of mo-

mentum before and after reaction implies that G-
34=G34 (see, (2.6)), and thus

J(G-
34 , V -; G34 , V )=J(V -, V ) (3.10)

where J(V -, V ) is the Jacobian of the transformation V [ V - given by

V -=V&=[(=, V) &:+]=V&= _(=, V)&�(=, V) 2+
2Eabs

+34 & (3.11)

The value of J(V -, V ) is (=, V)�- (=, V) 2+(2Eabs�+34). This shows that
J(v-, w-; v, w)=(=, v&w)�:+. The proof that J(v�, w�; v, w)=(=, v&w)�
:& follows the same arguments as above. Finally, using the definitions (2.3)
and (2.5) together with simple algebra one obtains the identities (=, v-&w-)
=:+ and (=, v�&w�)=:&. This completes the proof of Lemma 3.1.

Next, I consider the integrals

|
R 3

,1J R
1 dv=;12_2

12 |||
R 3_R3_S2

,1(v)[ f3(v�) f4(w�)& f1(v) f2(w)]

_(=, v&w) 3((=, v&w)&112) d= dw dv (3.12)

|
R 3

,2J R
2 dv=;21_2

21 |||
R 3_R3_S2

,2(v)[ f4(v�) f3(w�)& f2(v) f1(w)]

_(=, v&w) 3((=, v&w)&112) d= dw dv (3.13)

|
R 3

,3J R
3 dv=;34_2

34 |||
R 3_R3_S2

,3(v)[ f1(v-) f2(w-)& f3(v) f4(w)]

_(=, v&w) 3((=, v&w)&134) d= dw dv (3.14)
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and

|
R 3

,4J R
4 dv=;43_2

43 |||
R 3_R3_S2

,4(v)[ f2(v-) f1(w-)& f4(v) f3(w)]

_(=, v&w) 3((=, v&w)&134) d= dw dv (3.15)

appearing in the sum on the left hand side of (3.5). In (3.12)�(3.15), I also
suppressed x dependence in ,i and fi . Changing the variables of integration
in (3.14)�(3.15) from (v, w) to (v-, w-) and using Lemma 3.1 one obtains

|
R 3

,3J R
3 dv=;34_2

34 |||
R 3_R3_S2

,3(v)[ f1(v-) f2(w-)& f3(v) f4(w)]

_(=, v-&w-) 3((=, v&w)&134) d= dw- dv- (3.14$)

and

|
R 3

,4J R
4 dv=;43_2

43 |||
R 3_R3_S2

,4(v)[ f2(v-) f1(w-)& f4(v) f3(w)]

_(=, v-&w-) 3((=, v&w)&134) d= dw- dv- (3.15$)

Next, one notices that v and w (as the functions of v-, w-) become

v=v-+
+34

m3

=[(=, v&w) &:+]

=v-&
+12

m1

=[(=, v-&w-) &(=, v&w)]

=v-&
+12

m1

= _(=, v-&w-)&\((=, v&w) )2+
2Eabs

+34

&
2Eabs

+12 +
1�2

&
((=, v-&w-) )2

=v-&
+12

m1

=[(=, v-&w-)&:&(v-, w-)]=v�(v-, w-) (3.16)

and

w=w-+
+34

m3

=[(=, v&w) &:+]

=w-&
+12

m1

=[(=, v-&w-)&(=, v&w)]
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=w-&
+12

m1

= _(=, v-&w-)&\((=, v&w) )2+
2Eabs

+34

&
2Eabs

+12 +
1�2

&
( (=, v-&w-) )2

=w-&
+12

m1

=[(=, v-&w-)&:&(v-, w-)]=w�(v-, w-) (3.17)

where the identity (=, v-&w-) =:+ (from Lemma 3.1) and the property of
the reduced masses +12=+34 were used in (3.16)�(3.17).

Similarly, since +12=+34 , one observes that

((=, v&w) )2�2(#1&Eabs)�+34 � ((=, v-&w-) )2

=((=, v&w) )2+
2Eabs

+34

�
2(#1&Eabs)

+34

+
2Eabs

+34

=
2#1

+12

(3.18)

thus implying that 3((=, v&w) &134) in (3.14$)�(3.15$) can be replaced by
3((=, v-&w-)&112).

Now, combining (3.16)�(3.17) and (3.18), (3.14$)�(3.15$) take the form

|
R3

,3 J R
3 dv=;34_2

34 |||
R3_R3_S2

,3(v�)[ f1(v-) f2(w-)& f3(v�) f4(w�)]

_(=, v-&w-) 3((=, v-&w-)&112) d= dw- dv- (3.14")

and

|
R3

,4 J R
4 dv=;43_2

43 |||
R3_R 3_S2

,-
4(v)[ f2(v-) f1(w-)& f4(v�) f3(w�)]

_(=, v-&w-) 3((=, v-&w-) &112) d= dw- dv- (3.15")

Next, change of the variables (v, w, =) [ (w, v, &=) in (3.13) and (3.15")
together with renaming the integration variables from (v-, w-) to (v, w) in
(3.14")�(3.15"), and finally summing up the resulting left hand sides of
(3.12)�(3.15), results in (3.5).

Proof of (3.6) follows the same line of arguments; this time however,
one changes the integration variables in (3.12)�(3.13) from (v, w) to
(v�, w�). In this process v and w, as the functions of v�, w�, become v- and
w-, respectively. K
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Remark 1. The assumption in Proposition 3.1 that fi # C0(0_R3),
for i=1,..., 4, is only needed to make sure that all the integrals exist and
are finite.

Proposition 3.1 has been proven under the conditions that ;ij=;ji for
(i, j) # [(1, 2), (2, 1), (3, 4), (4, 3)], and +12=+34 . Although it is possible to
obtain extensions of Proposition 3.1 without any assumptions on ;ij , I will
not consider here these generalizations. Furthermore, since we already have
the identities _12=_34=_21=_43 , in order to have the conservation laws
(of mass, momentum, and energy) built into the model one has to require
that ;12=;34 . Below, I state the conditions that will be assumed from now
on in this work:

Condition 1:

1. Reactive distance: _12=_34 ,

2. Masses: m1=m3 and m2=m4 , (implying +12=+34)

3. Steric factors: 0�;12�1 and ;12=;21=;34=;43 ,

4. Internal energies: Ei>0, i=1,..., 4, and Eabs=E3+E4&E2&E1>0,

5. Activation energies: #1=#2�Eabs and #3=#4=#1&Eabs .

Now, under Condition 1 and in view of (3.4) and (3.5), one has, for
any a, c # R and b # R3,

,i (x, v)=ami+mi (b, v)+c \mi v2

2
+Ei+ , i=1,..., 4

O{
:
4

i=1
|

R 3
,i J E

i dv=0

:
4

i=1
|

R3
,iJ R

i dv=0

(3.19)

Property (3.19) implies that if f i is a nonnegative smooth solution of (3.1)
on [0, T ], T>0, then, at least formally, we have the following conserva-
tion laws for t # [0, T ]:

:
4

i=1
||

0_R3

mi fi (t, x, v) dv dx

= :
4

i=1
||

0_R3

mi f i0(x, v) dv dx, (conservation of mass) (3.20)

338 Polewczak



:
4

i=1
||

0_R 3

mivfi (t, x, v) dv dx

= :
4

i=1
||

0_R3

mi vfi0(x, v) dv dx, (conservation of momentum) (3.21)

:
4

i=1
||

0_R 3
\mi v2

2
+Ei+ fi (t, x, v) dv dx

= :
4

i=1
||

0_R3
\mi v2

2
+Ei+ fi0(x, v) dv dx, (conservation of energy)

(3.22)

where fi0(x, v), i=1,..., 4, are nonnegative initial conditions of the dilute
SRS kinetic system (3.1). The above conservation laws follow easily from
multiplying the dilute SRS system by corresponding ,i , integrating with
respect to (t, x, v) # [0, T ]_0_R3, and using (3.19).

An additional conservation law (along the characteristics of the
streaming operator in the left hand side of (3.1)) can be obtained by
noticing that �4

i=1 �R3 , iJ E
i dv=0 and �4

i=1 �R3 , iJ R
i dv=0 also for

,i (x, v)=mi ((x&tv)2�2)+Ei and any t # [0, T ]. Next, after multiplying
dilute SRS kinetic system (3.1) by mi ((x&tv)2�2)+Ei and integrating by
parts, one has, for t # [0, T ],

:
4

i=1
||

0_R3
\m i (x&tv)2

2
+Ei+ fi (t, x, v) dv dx

= :
4

i=1
||

0_R3
\mix2

2
+Ei+ fi0(x, v) dv dx (3.23)

Similarly to the cases of the kinetic equations for a single specie (see, for
example, refs. 8 and 14), the conservation laws (3.20)�(3.23) and non-
negativity of fi , fi0 yield the following estimation

sup
i

sup
t # [0, T ]

||
0_R 3

x2fi (t, x, v) dv dx�C1 (3.24)

where C1>0 depends only on T, sup i ��0_R3 x2f i dv dx, and on
supi ��0_R 3 (1+v2) fi dv dx.

Remark 2. The estimation (3.24) is superfluous in the case
0=[0, L]3.
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Proposition 3.1 also implies existence of a Liapunov functional (an
H-function) for (3.1), consistent with system's physical equilibrium. For fi

a smooth nonnegative solution, we multiply (3.1) by 1+log fi , integrate
over 0_R3, and use (3.4)�(3.5) (with ,i=log f i ) to obtain the following
entropy identity:

d
dt

:
4

i=1
||

0_R 3

fi log f i dv dx

+ :
4

i, s=1

_2
is | } } } |

0_R 3_R 3_S2

[ f i (v$) fs(w$)& f i (v) fs(w)]

_log \ f i (v$) fs(w$)
f1(v) fs(w) + 3((=, v&w) )(=, v&w) 5is d= dw dv dx

+;12_2
12 | } } } |

0_R 3_R 3_S2
{[ f3(v�) f4(w�)& f1(v) f2(w)]

_log \ f3(v�) f4(w�)
f1(v) f2(w) + 3((=, v&w)&112)(=, v&w)= d= dw dv dx=0

(3.25)

with 5is given in (3.7). It is important to notice that the second and the
third terms in the left hand side of (3.25) are nonnegative. Indeed, this
follows from the inequalities

[ fi (v$) fs(w$)& f i (v) fs(w)] log \ fi (v$) fs(w$)
f i (v) fs(w) +�0

(3.26)

[ f3(v�) f4(w�)& f1(v) f2(w)] log \ f3(v�) f4(w�)
f1(v) f2(w) +�0

for any i s=1,..., 4. Next, integrating (3.25) over 0�t1�{�t2�T and
using (3.26), one obtains the corresponding H-theorem,

:
4

i=1
||

0_R 3

f i (t2) log f1(t2) dv dx

� :
4

i=1
||

0_R3

fi (t2) log f i (t2) dv dx+|
t2

t1
||

0_R 3

2(v, [ fi ]) dv dx
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# :
4

i=1
||

0_R3

fi (t2) log f i (t2) dv dx

+ :
4

i, s=1

_2
is |

t2

t1
| } } } |

0_R3_R3_S2

[ fi (v$) fs(w$)& f i (v) fs(w)]

_log \ fi (v$) fs(w$)
fi (v) fs(w) + 3((=, v&w) )(=, v&w) 5is d= dw dv dx d{

+;12_2
12 |

t2

t1
| } } } |

0_R3_R 3_S2
{[ f3 v�) f4(w�)& f1(v) f2(w)]

_log \ f3(v�) f4(w�)
f1(v) f2(w) + 3((=, v&w)&112)(=, v&w)= d= dw dv dx d{

= :
4

i=1
||

0_R3

fi (t1) log f i (t1) dv dx (3.27)

since 2(v, [ fi ])�0. This shows that, for a nonnegative solution fi of (3.1),
the convex function H(t) defined by

H(t)= :
4

i=1
||

0_R3

fi (t, x, v) log fi (t, x, v) dv dx (3.28)

is non-increasing in t.

Remark 3. If instead of (3.5) one uses identity (3.6), then the
following (equivalent) entropy identities is true:

d
dt

:
4

i=1
||

0_R 3

f i log fi dv dx

+ :
4

i, s=1

_2
is | } } } |

0_R 3_R3_S2

[ f i (v$) fs(w$)& f i (v) fs(w)]

_log \ fi (v$) fs(w$)
fi (v) fs(w) + 3((=, v&w) )(=, v&w) 5is d= dw dv dx
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+;12 _2
12 | } } } |

0_R3_R3_S2
{[ f1(v-) f2(w-)& f3(v) f4(w)]

_log \ f1(v-) f2(w-)
f3(v) f4(w) + 3((=, v&w) &134)(=, v&w)= d= dw dv dx=0

(3.29)

With the help of the entropy identity (3.25) and the inequalities (3.26) one
can describe the equilibria solutions of (3.1). First, it is convenient to define
macroscopic quantities (as the moments of fi ): the number densities n(t, x),
the macroscopic velocity u(t, x), and the macroscopic temperature T(t, x):

ni (t, x)=|
R3

fi (t, x, v) dv, n(t, x)= :
4

i=1

ni (t, x) (3.30)

u(t, x)=
�4

i=1 mini (t, x) u i (t, x)
�4

i=1 mini (t, x)
, ui (t, x)=

�R 3 vf i (t, x, v) dv
n i (t, x)

(3.31)

3kn(t, x) T(t, x)= :
4

i=1

mi |
R 3

[v&u(t, x)]2 f i (t, x, v) dv (3.32)

where k is the Boltzmann constant.

Proposition 3.2 (Equilibrium Solutions). Assume Condition 1
and let ni (t, x)�0, u(t, x), and T(t, x)�0 be given measurable functions.
Then for all 0� fi # L1(0_R3) with the moments given by (3.30)�(3.32) the
following statements are equivalent:

1. fi=ni (mi �2?kT)3�2 exp(&(m i (v&u)2�2kT)), i=1,..., 4, and
n1 n2=n3n4 exp(Eabs �kT),

2. J E
i ([ f i ])=0 and J R

i ([ f i ])=0, i=1,..., 4,

3. �4
i=1 �R 3 [J E

i ([ fi ])+J R
i ([ f i ])] log f i dv=0.

Proof. I proceed by showing that (1) O (2) O (3) O (1). The proof of
the first implication follows from substituting fi , given in (1), into the colli-
sion integrals J E

i and J R
I and applying the conservation of mass, momen-

tum, and energy on the microscopical level (see (2.6) and (2.7) for the
corresponding identities). The second implication (i.e., (2) O (3)) is trivially
satisfied. In order to show the last implication (3) O (1) one observes that
using Proposition 3.1
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0= :
4

i=1
|

R3
[J E

i ([ fi ])+J R
i ([ f i ])] log f i dv

= :
4

i, s=1

_2
is | } } } |

0_R 3_R 3_S2

[ f i (v$) fs(w$)& fi (v) fs(w)]

_log \ f i (v$) fs(w$)
f i (v) fs(w) + 3((=, v&w) )(=, v&w) 5is d= dw dv dx

+;12_2
12 | } } } |

0_R 3_R3_S2
{[ f3(v�) fs(w�)& f1(v) f2(w)]

_log \ f3(v�) f4(w�)
f1(v) f2(w) + 3((=, v&w)&112)(=, v&w)= d= dw dv dx

(3.33)

where, as before, I suppressed t and x dependence in fi . Next, inequalities
5is�0 and (3.26) together with fact that the for the function f ( y, z)=
( y&z) log( y�z)�0, y, z>0, the equality sign, ( y&z) log( y�z)=0, holds if
and only if y=z, yield the set of functional identities for fi , i=1,..., 4,

fi (v$) fs(w$)

=fi (v) fs(w), almost everywhere in (v, w) # R3_R3, i, s=1,..., 4

(3.34)

f3(v�) f4(w�)

=f1(v) f2(w), almost everywhere in (v, w) # R3_R3 (3.35)

The solution to (3.34) is well known from the, kinetic theory of nor-reac-
tive mixtures (see, for example, ref. 13):

fi (v)=exp(ai+(bi , v)+civ2) (3.36)

for some ai , ci # R and b i # R3. Next, integrability conditions together with
the normalization and constraints (3.30)�(3.32) imposed on fi imply that

fi=ni \ mi

2?kT+
3�2

exp \&
m i (v&u)2

2kT + , i=1,..., 4 (3.37)

Finally, for fi given in (3.37), the identity (3.35) is easily seen to be equiv-
alent to n1n2=n3n4 exp(Eabs �kT), which is expresses equilibrium reaction
rate of the chemical processes in the mixture. K
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Remark 4. For the proof of equilibrium solutions, found in
Proposition 3.2, I utilized identities (3.4)�(3.5) of Proposition 3.1. If instead
of (3.5) one uses identity (3.6), then, in the proof, identity (3.35) is replaced
by

f1(v-) f2(w-)= f3(v) f4(w), almost everywhere in (v, w) # R3_R3

(3.38)

which, for fi in (3.37), is also equivalent to n1n2=n3n4 exp(Eabs�kT).

4. EXISTENCE RESULTS FOR THE DILUTE SRS SYSTEM

The proof of the existence theorem presented bellow follows the ideas
developed by R. DiPerna and P. L. Lions(8) for the non-reactive single
specie Boltzmann equation. It has three ingredients: (1) use of the L1-weak
compactness argument that follows from the conservation laws (3.20)�
(3.22) and the entropy identity (3.25), (2) the velocity averaging lemma, (15)

and (3) a suitable notion of mild (or renormalized) solutions.
For the weak compactness argument one notices that if a nonnegative

initial value f i0 of the evolution system (3.1) satisfies

sup
i

||
0_R3

(1+x2+v2+log+ fi0) fi0 dv dx=C0<� (4.1)

then (3.20)�(3.22), (3.24), and the entropy identity (3.25) yield the follow-
ing estimation for a smooth and nonnegative solution, f i , of (3.1)

sup
i

sup
0�t�T

||
0_R3

(1+x2+v2+log+ f i ) f i dv dx=CT<� (4.2)

where log\(z)=max[\log(z), 0].

Remark 5. When 0=[0, L]3, constant CT in (4.2) is independent
of T.

Estimation (4.2) (the Dunford�Pettis theorem, see, for example,
ref. 16) implies that the family of solutions [ fi (t) : 0�t�T ] is relatively
weakly compact in L1(0_R3).

From the physical point of view, (4.1) means that we start with the
system that has finite total mass, momentum, energy, as well as finite initial
entropy. In fact, at least at equilibrium and in the non-reactive situations,
&H(t), where H(t) is an H-function defined in (3.28), represents an
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entropy of the considered system. Furthermore, (4.2) shows that these
properties are maintained during the evolution of the system. For the proof
of estimation (4.2) it is enough to notice that (3.27), with t2=t and t1=0,
yields (since 2(v, [ fi ])�0) for 0�t�T,

sup
i

||
0_R3

f i (t) log+ f i (t) dv dx

� :
4

i=1
|

0_R3

f i (t) log+ f i (t) dv dx+|
t

0 ||
0_R 3

2(v, [ f i ]) dv dx (4.3)

= :
4

i=1
||

0_R 3

f i (t) log& f i (t) dv dx+ :
4

i=1
||

0_R3

f i0 log+ f i0 dv dx

& :
4

i=1
||

0_R 3

f i0 log& fi0 dv dx (4.4)

Next, use of the inequality z log(z�y)�& y with y=exp(&x2&v2) and
z= f i together with estimation (4.1) and boundedness of supi sup0�t�T

�0_R 3 (1+x2+v2) f i dv dx implies

sup
i

sup
0�t�T

||
0_R3

fi (t) log+ f i (t) dv dx�C� T (4.5)

and ultimately, (4.2).
Estimation (4.5) has another important physical interpretation: there

can be now concentration of densities in the system. Indeed, using the
Dunford�Pettis theorem (see, for example, ref. 16) one obtains that the
family of macroscopic densities [ni (t, x) : 0�t�T ] is uniformly
integrable, i.e., to each *>0 there corresponds a $>0 such that

sup
i

sup
0�t�T

|
E

n i (t, x) dx<* (4.6)

for any E/0 with vol(E )<$. In particular, when 0=[0, L]3, T can be
set to � in (4.6).

The next step consists in finding suitable approximations J E
in and J R

in of
JE

i and J R
i , respectively, for which the problem

�f n
i

�t
+v

�f n
i

�x
=J E

in+J R
in , f n

i (0, x, v)= f n
i0(x, v), i=1,..., 4, (x, v) # 0_R3

(4.7)
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can be solved by known methods. Then, one takes the weak limit
f n

i ww�
n � �

f i , and tries to show that fi satisfies (3.1) in some specified sense.
An important criterion of suitable approximations for J E

i and J R
i is that J E

in

and J R
in must satisfy the properties listed in Proposition 3.1. These proper-

ties alone yield the crucial weak compactness estimation (4.2). The collision
integrals J E

i and J R
i are not weakly continuous in L1(0_R3) (in fact, they

are even difficult to define in a reasonable way in L1(0_R3)), thus the
passage to the limit in (4.7) cannot be achieved without additional tools.
This brings us to the remaining two ingredients of DiPerna�Lions method.
The velocity averaging lemma provides an additional compactness argu-
ment needed in the passage to the limit in (4.7).

Lemma 4.1 (Velocity Averaging(15)). If hn # L1((0, T )_0_
R3) and gn # L1

loc((0, T )_0_R3) satisfy the following transport equation

Tvhn#
�hn

�t
+v

�hn

�x
= gn (4.8)

in D$((0, T )_0_R3), and for each compact set K/(0, T )_0_R3 the
sequences [hn] and [gn] are relatively weakly compact in L1((0, T )_0_
R3) and L1(K ), respectively, then for all , # L�((0, T )_0_R3) the set

{|R3
,(t, x .v) fn(t, x, v) dv : n=1, 2,...=
={|R 3

,(t, x .v)(T &1
v gn)(t, x, v) dv : n=1, 2,...= (4.9)

is relatively compact in L1((0, T )_0).
Velocity averaging compensates for lack of regularity of Tv on the set

of characteristic directions.

Definition 4.1. A nonnegative fi # L1
loc((0, T )_0_R3) is a renor-

malized solution of (3.1) if

1
1+ fi

J E\
i # L1

loc((0, T )_0_R3),
1

1+ f i
J R\

i # L1
loc((0, T )_0_R3)

(4.10)

and

�
�t

log(1+ fi )+v
�

�x
log(1+ f i )=

1
1+ f i

[J E
i +J R

i ] (4.11)
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in D$((0, T )_0_R3), where

J E
i =J E+

i &J E&
i , J R

i =J R+
i &J R&

i (4.12)

with J E\
i and J R\

i given by

J E+
i = :

4

s=1 {_2
is ||

R 3_S2

fi (t, x, v$) fs(t, x, w$) 3((=, v&w) )(=, v&w) d= dw=

&;ij_2
ij ||

R 3_S2

fi (t, x, v$) fs(t, x, w$)

_3((=, v&w) &1ij )(=, v&w) d= dw (4.13)

J E&
i =fi (t, x, v) :

4

s=1
{_2

is ||
R 3_S2

fs(t, x, w) 3((=, v&w) )(=, v&w) d= dw=

&;ij_2
ij f i (t, x, v) ||

R 3_S2

fs(t, x, w) 3((=v&w)&1ij )(=, v&w) d= dw
(4.14)

and

J R+
i =;ij _2

ij ||
R3_S2

fk(t, x, vx

ij ) fl (t, x, wx

ij ) 3((=, v&w) &1 ij )

_(=, v&w) d= dw (4.15)

J R&
i =;ij _2

ij fi (t, x, v) ||
R3_S2

fj (t, x, w) 3((=, v&w)&1ij )(=, v&w) d= dw
(4.16)

respectively.
In (4.15)�(4.16), as before, (vx

ij , wx
ij )=(v�, w�) for i, j=1, 2, and

(vx

ij , wx

ij )=(v-, w-) for i, j=3, 4. Also the index pairs (i, j) and (k, l ) are
associated with the set of indices (i, j, k, l ) specified in (2.9).

Remark 6. The steric factors 0�;ij�1, therefore both operators
JE+

i and J E&
i (at least formally) map nonnegative functions into non-

negative functions.
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Next, let us assume for a moment that one already has found suitable
approximations J E

in and J R
in to (3.1). If for i=1, 2, 3, 4, [ f n

i ]�
n=1 is a

sequence of nonnegative, solutions to (4.7) satisfying (4.2), uniformly in n,
then, for =1, 2, 3, 4 and $>0, f n$

i =(1�$) log(1+$f n
i ) satisfies 0� f n$

i �
f n

i . Thus, the sequence [ f n$
i ]�

n=1 is relatively weakly compact in
L1((0, T )_0_R3) and satisfies

�
�t

f n$
i +v

�
�x

f n$
i =

1
1+$f n

i

[J E
in([ f n

i ])+J R
in([ f n

i ])] (4.17)

The averaging velocity Lemma 4.1 yields that the sequence
[�R 3 ,f n$

i dv]�
n=1 , for each fixed i=1, 2, 3, 4 and $>0, is relatively com-

pact in L1((0, T )_0), for all , # L�((0, T )_0_R3), if the sequence

{ 1
1+$f n

i

[J E
in([ f n

i ])+J R
in([ f n

i ])]=
�

n=1

is relatively weakly compact in L1((0, T )_0_Br) (4.18)

with Br=[ y # R3 : |z|�r]. For the proof of (4.18) one needs gain-loss
comparison estimates (a similar estimation appears in the case of a single
specie Boltzmann equation(8)). For simplicity, I formulate them only for
the original collision integrals J E

i and J R
i .

Lemma 4.2. For i, s=1, 2, 3, 4 and any M>1

JE+
i ([ f n

i ])

�MJ E&
i ([ f n

i ])+_2
is ||

R3_S2

[ fi (v$) fs(w$)& f i (v) fs(w)]

_log \ fi (v$) fs(w$)
fi (v) fs(w) + 3((=, v&w) )(=, v&w) 5� is d= dw (4.19)

JR+
1 ( f n

3 , f n
4)

�MJ E&
1 ( f n

1 , f n
2)+

1
log M

;12_2
12 ||

R 3_S2

[ f n
3(v�) f n

4(w�)& f n
1(v) f n

2(w)]

_log \ f n
3(v�) f n

4(w�)
f n

1(v) f n
2(w) + 3((=, v&w) &112)(=, v&w) d= dw (4.20)
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JR+
2 ( f n

3 , f n
4)

�MJ E&
2 ( f n

1 , f n
2)+

1
log M

;12_2
12 ||

R 3_S2

[ f n
4(v�) f n

3(w�)& f n
2(v) f n

1(w)]

_log \ f n
4(v�) f n

3(w�)
f n

2(v) f n
1(w) + 3((=, v&w) &112)(=, v&w) d= dw (4.21)

JR+
3 ( f n

1 , f n
2)

�MJ E&
3 ( f n

3 , f n
4)+

1
log M

;34_2
34 ||

R 3_S2

[ f n
1(v-) f n

2(w-)& f n
3(v) f n

4(w)]

_log \ f n
1(v-) f n

2(w-)
f n

3(v) f n
4(w) + 3((=, v&w) &134)(=, v&w) d= dw (4.22)

JR+
4 ( f n

1 , f n
2)

�MJ E&
4 ( f n

3 , f n
4)+

1
log M

;34_2
34 ||

R 3_S2

[ f n
2(v-) f n

1(w-)& f n
4(v) f n

3(w)]

_log \ f n
2(v-) f n

1(w-)
f n

4(v) f n
3(w) + 3((=, v&w) &134)(=, v&w) d= dw (4.23)

where 5� is is given by

3((=, v&w)&1is)+(1&;is) 3(1is&(=, v&w) ),

5� is={ if (i, s) # [(1, 2), (2, 1), (3, 4), (4, 3)] (4.24)

3((=, v&w) ), otherwise

Each of the inequalities (4.19)�(4.23) can be proven in a similar way as in
the case of a single specie Boltzmann equation (see [8, p. 336]).

Now, since f n
i satisfy (4.2), uniformly in n, the sequences,

{ 1
1+$f n

i

J E&
i ([ f n

i ])=
�

n=1

, { 1
1+$f n

i

J R&
i ([ f n

i ])=
�

n=1

/L�((0, T ); L1(0_Br)) (4.25)

are relatively weakly compact in L1((0, T )_0_Br), for any r>0. Proof of
this is similar to the single specie case (see, for example, [8, pp. 353�354]).
Next, the second terms of the right hand sides in each of the inequalities

349Kinetic Theory of Simple Reacting Spheres



(4.19)�(4.20) are nonnegative and bounded above by the nonnegative func-
tion 42(v, [ f n

i ]) that appears in the H-theorem (3.27). The entropy iden-
tity (3.25) together with (4.2) yields that the set 2(v, [ f n

i ])]�
n=1 is bounded

in L1((0, T )_0_R3), and the comparison principle implies the weak com-
pactness in L1((0, T )_0_Br) of the sequences

{ 1
1+$f n

i

J E+
i ([ f n

i ])=
�

n=1

, { 1
1+$f n

1

J R+
1 ( f n

3 , f n
4=

�

n=1

(4.26)

The second term of the right hand side of (4.21) is nonnegative and its
L1-norm, after performing the change of variables (v, w, =) [ (w, v, &=), is
bounded above by supn &2( f n

i )&L1((0, T )_0_R 3)<�. As before, this proves
the weak compactness of the sequence [(1+$f n

2)&1 J R+
2 ( f n

3 , f n
4)]�

n=1 in
L1((0, T )_0_Br). The steps in proving the weak compactness of the sequen-
ces [(1+$f n

3)&1 J R+
3 ( f n

1 , f n
2)]�

n=1 and [(1+$f n
4)&1 J R+

4 ( f n
1 . f n

2)]�
n=1 are

identical to the previous, ones, with one exception that this time one uses
the form of the entropy identity given in (3.29). This ends the proof of
(4.18), at least for the original collision integrals. Once a suitable
approximation is defined, it will become clear how to use the just given
proof to show (4.18).

Finally, we have

Lemma 4.3. If for each i=1, 2, 3, 4 the nonnegative sequence
[ f n

i ]�
n=1 satisfies (4.2), uniformly in n, and for each $>0 the sequence

[�R 3 ,f n$
i dv]�

n=1 , with f n$
i =(1�$) log(1+$f n

i ), is relatively compact in
L1((0, T )_0), for all , # L1((0, T )_0_R3), then the sequence
[�R 3 ,f n

i dv]�
n=1 is also relatively compact in L1((0, T )_0), for all

, # L1((0, T )_0_R3).

Proof. Estimation (4.2) implies that [ f n
i ]�

n=1 , i=1, 2, 3, 4, are
weakly relatively compact in L1(0_R3), thus it is enough to show that for
all , # L1((0, T )_0_R3) and after passing to a subsequence, if necessary,

|
R 3

,f n
i dv ww�

n � � |
R3

,fi dv strongly in L1((0, T )_0), i=1, 2, 3, 4

(4.27)

where fi is a weak limit of [ f n
i ]�

n=1 . I claim that (4.27) follows if it can be
shown that

sup
n

sup
0�t�T

& f n
i & f n$

i &L1(0_R 3) ww�
$ � 0+ 0, i=1, 2, 3, 4 (4.28)
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Indeed, since the norm is lower weakly semi-continuous, one obtains from
(4.28)

sup
0�t�T

& fi& f $
i &L1(0_R3)

� sup
0�t�T

lim inf
n � �

& f n
i & f n$

i &L1(0_R 3) ww�
$ � 0+ 0, i=1, 2, 3, 4 (4.29)

and

|
R 3

f n
i , dv=|

R 3
( f n

i & f n$
i ) , dv+|

R3
( f n$

i & f $
i ) , dv+|

R 3
f $

i , dv,

i=1, 2, 3, 4 (4.30)

where f $
i is the weak limit of [ f n$

i ]�
n=1 satisfying, by the assumption,

|
R 3

,f n$
i dv ww�

n � � |
R 3

,f $
i dv strongly in L1((0, T )_0), i=1, 2, 3, 4

(4.31)

Thus, the application of (4.28)�(4.31) gives (4.27) for all , # L1((0, T )_
0_R3). Next, in order to prove (4.28) we notice that for all R>0

0�s&
1
$

log(1+$s)�s _\1&
log(1+$s)

$s + /[s�R] &+s/[s�R] (4.32)

with /A the characteristic function of the set A and [1&log(1+$s)�
($s)] /[s�R] ww�

$ � 0+ 0 locally uniformly in R. Finally, the estimation (4.2)
implies

sup
n

sup
0�t�T

||
0_R3

f n
i /[s�R] dv dx ww�

R � �
0, i=1, 2, 3, 4 (4.33)

thus completing the proof of (4.28) and the lemma itself. K

Remark 7. In fact, using again (4.2), the convergence in (4.27)
holds for , with (1+|x|k+|v| k)&1 , # L�((0, T )_0_R3) and 0�k<2.

The strong convergence in (4.27) is fundamental in proving that a
sequence of smooth solutions converges weakly to a renormalized solution.
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I consider now the approximate problem,

�f n
i

�t
+v

�f n
i

�x
=J E

in+J R
in , f n

i (0, x, v)= f n
i0(x, v), i=1,..., 4, (x, v) # 0_R3

(4.34)

where

\1+
1
n

:
4

m=1
|

R 3
f n

m dv+ J E
in

= :
4

s=1
{_2

is ||
R 3_S2

[ f n
i (t, x, v$) f n

s(t, x, w$)& f n
i (t, x, v) f n

s (t, x, w)]

_3((=, v&w) ) BE
n (v, w, =) d= dw=

&;ij _2
ij ||

R 3_S2

[ f n
i (t, x, v$) f n

s (t, x, w$)& f n
i (t, x, v) f n

s (t, x, w)]

_3((=, v&w) &1ij ) BE
n (v, w, =) d= dw (4.35)

and

\1+
1
n

:
4

m=1
|

R3
f n

m dv+ J R
in

=;ij_2
ij ||

R3_S2

[ f n
k(t, x, vx

ij ) f n
l (t, x, wx

ij )& f n
i (t, x, v) f n

j (t, x, w)]

_3((=, v&w) &1ij ) B (ij)
n (v, w, =) d= dw (4.36)

with

BE
n (v, w, =)={(=, v&w) ,

0,
if v2+w2�n
otherwise

(4.37)

and

B (ij)
n (v, w, =)

={
BE

n (v, w, =),
(=, v&w)

- ((=, v&w) )2+2Eabs�+34

BE
n (v-, w-, =),

if (i, j) # [(1, 2), (2, 1)]

if (i, j) # [(3, 4), (4, 3)]

(4.38)

352 Polewczak



As before, the pair of velocities (vx

i , vx

j ) refers to post-reactive velocities
described either in (2.3) or (2.5), i.e., (vx

ij , wx

ij )=(v�, w�) for i, j=1, 2, and
(vx

ij , wx

ij )=(v-, w-) for i, j=3, 4. Also, the index pairs (i, j) and (k, l )
appearing in (4.35)�(4.36) are associated with the set of indices (i, j, k, l )
specified in (2.9).

The initial distributions f n
i0 are given by

f n
i0=max {min[ fi0 , n],

\
n

exp(&x2&v2)= (4.39)

where fi0�0 satisfy (4.1) and \>0 is sufficiently small.
Observe that for n�1, the approximate scattering kernels BE

n ,
B(ij)

n # L�(R3_R3_S2); they are also symmetric with respect to the change
of variables (v, w, =) [ (w, v, &=). In addition, Lemma 3.1 implies that they
converge pointwise (and in L1

loc(R
3_R3_S2) to (=, v&w) as n � �.

Furthermore, f n
i0 � f i0 in L1(0_R3) and, for each n�1, f n

i0 # L�(0_R3),
i=1, 2, 3, 4.

Remark 8. The important property of the approximate collision
integrals defined in (4.35)�(4.36) is that they possess properties listed in
Proposition 3.1. Indeed, using Lemma 3.1, is easy to see that the corre-
sponding identities (3.4)�(3.6) hold with the expressions (=, v&w)
replaced by BE

n (v, w, =), B (12)
n (v, w, =), and B (34)

n (v, w, =), respectively.

Next, I set up problem (4.34) in the framework of a semilinear evolu-
tion equation in the Banach space X=>4

i=1 L1(0_R3) with the norm
& f &X=sup i ��0_R3 | f | dv dx. Consider the operator in X,

Af#(v{x f1 , v{x f2 , v{x f3 , v{x f4) (4.40)

with f =( f1 , f2 , f3 , f4). Then, A generates a strongly continuous contrac-
tion semigroup U(t) in X. Next, for f0=( f n

10 , f n
20 , f n

30 , f n
40), I rewrite

(4.34) as a semilinear evolution equation on the closed set DM/X, M>0,

DM={( f1 , f2 , f3 , f4) # X : fi�0, :
4

i=1
||

0_R3
\miv2

2
+Ei+ f i dv dx�M=

(4.41)

in the form

d
dt

f n(t)+Af n=Fn( f n), f n(0)= f0 , 0�t�T (4.42)
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where

Fn( f n)=(J E
1n([ f n

i ])+J R
1n([ f n

i ]), J E
2n( f n

i ])+J R
2n([ f n

i ]),

J E
3n([ f n

i ])+J R
3n([ f n

i ]), J E
4n([ f n

i ])+J R
4n([ f n

i ])) (4.43)

with f n=( f n
1 , f n

2 , f n
3 , f n

4). A continuous function f from [0, T ] into
DM/X is a weak solution of (4.42) if it satisfies

f (t)=U(t) f0+|
t

0
U(t&s) F( f (s) ds (4.44)

for t # [0, T ]. In (4.44), the integral is the Riemann integral in X, where for
clarity, I suppressed the subscript n from f, f0 , and F. Among many
theorems that guarantee the existence of weak solutions to semilinear
evolution equations (4.44), the one below is suitable for our case (see, for
example, Theorem 2.1, p. 335 of ref. 17).

Theorem 4.1. Assume that:

1. U(t): DM [ DM is a strongly continuous semigroup in X
generated by A,

2. F : DM [ X and there exists K>0 such that

&F( f )&F(g)&X�K & f& g&X , f, g # Dm

3. For f # DM

lim inf
h � 0+

dist( f +hF( f ); DM)=0

where

dist( f; DM)= inf
g # DM

& f& g&X

is the distance function from f to DM .
Then there exists a unique weak solution f on [0, T ], for any T>0.

Condition (3) of Theorem 4.1, known often as the Nagumo boundary
condition for the set DM , guarantees invariance of DM under the time
evolution.

Next, I check that the conditions of Theorem 4.1 are satisfied for A in
(4.40) and F in (4.43). The action of U(t) on f =( f1 , f2 , f3 , f4) is given by

(U(t) f )(x, v)=( f1(x&tv, v), f2(x&tv, v), f3(x&tv, v), f4(x&tv, v))

(4.45)
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thus, (1) is satisfied. For (2) it is enough to notice that since f # DM , fi�0,
and the multiplication factor (1+(1�n) �4

i=1 �R 3 f n
i dv)&1 appearing in

front the approximate collision integrals (4.35)�(4.36) makes the operator
F Lipschitz continuous with constant K dependent on n. Finally, by split-
ting J E

in=J E+
in &J E&

in and J R
in=J R+

in &J R&
in in an analogical way as for the

original collision integrals (4.13)�(4.16), one notes that for f # DM ,
fi+hJ E

in([ f i ])�0, i=1, 2, 3, 4, for small enough h>0; therefore the
analog of Proposition 3.1 for the approximate collision integrals
(4.35)�(4.36) (see Remark 8) with ,i=miv2�2+Ei yields the Nagumo
boundary condition (3).

In the last step before stating the main existence result, I recall two
additional (equivalent) notions of solutions used in the original work of
DiPerna�Lions.(8)

Definition 4.2. A nonnegative fi # L1
loc((0, T )_0_R3), i=1, 2, 3, 4,

is a mild solution of (3.1) if for each 0<T<�, J E\
i ([ fi ]), JR\([ fi ]) #

L1(0, T ), a.e. (almost everywhere) in (x, v) # 0_R3 and satisfies

f *
i (t, x, v)& f *

i (s, x, v)

=|
t

s
[J E

i ([ fi ])* ({, x, v)+J R
i ([ f i ])* ({, x, v)] d{, 0<s<t�T

(4.46)

where f *
i (t, x, v)= f (t, x+tv, v) and similarly for J E*

i and J R*
i .

Following ref. 8, one can show that fi is mild solution if and only if fi

is a renormalized solution (Definition 4.1). Finally, let F*
i (t, x, v)=

�t
0 Li ([ f i ])* ({, x, v) d{, where f iLi ([ f i ])=J E&

i ([ fi ])+J R&
i ([ f i ]), with

JE&
i and J R&

i given in (4.14) and (4.16), respectively. If for i=1, 2, 3, 4,
T>0 Li ([ fi ]) # L1

loc((0, T )_0_R3), then f i is a mild solution of (3.1) if
and only if fi satisfies

f *
i (t, x, v)& f *

i (s, x, v) exp[&[F*
i (t)&F*

i (s)]]

=|
t

s
[J E+

i ([ f i ])+J R+
i ([ f i ])]* ({, x, v)

_exp[&[F*
i (t)&F*

i ({)]] d{ (4.47)

for any 0<s<t�T and a.e. in (x, v) # 0_R3, i=1, 2, 3, 4. Here, J E+
i and

JR+
i are given in (4.13) and (4.15), respectively.
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Theorem 4.2 (Global Existence Result). If for i=1, 2, 3, 4,
fi0�0 satisfies condition (4.1) then there exists a nonnegative mild solution
fi of (3.1), with fi # C[0, T ]; L1(0_R3)) satisfying (4.3), and such that
fi (t) | t=0= fi0 , for i=1, 2, 3, 4.

Proof. I will sketch the proof in several steps. For brevity, I will skip
details of proofs that are very similar to the case of a single specie
Boltzmann equation.(8)

Step 1. From the identity ( f n)* (t, x, v)=(U(&t) f n)(t, x, v) it
follows that the weak solutions f n

i obtained in Theorem 4.1 are also mild
solutions. Now, we observe that

" 1
(1+(1�n) �4

m=1 �R 3 f n
m dv)

J E\
in ([ f n

i ])"L�(0_R3)

�Cn sup
i

& f n
i &L�(0_R3)

(4.48)

and

" 1
(1+(1�n) �4

m=1 �R 3 f n
m dv)

J R\
in ([ f n

i ])"L�(0_R3)

�Cn sup
i

& f n
i &L�(0_R 3)

(4.49)

The proof of the above estimates in the cases of J E+
in and J R+

in requires the
change of integration from w to V$=v$&w$ and V �=v�&w� (or V -=
v-&w-), respectively. Thus, since f n

i0 # L�((0, T )_0_R3), Gronwall's
lemma applied to (4.44) gives L�-bound of approximate solutions. This
bound depends on n and becomes arbitrary large as n � �.

Now, combining f n
i0(x, v)�(\�n) exp(&v2&x2), J E&

in ([ f n
i ])+

JR&
in ([ f n

i ])= f n
i Lin([ f n

i ]), with Lin satisfying &Lin([ f n
i ])&L�(0_R 3)�Cn ,

one shows, similarly to the single specie case (see, refs. 8 or 14) that the
approximate solution f n

i satisfies, i=1, 2, 3, 4,

f n
i (t, x, v)�

\
n

exp(&Cn t&|x&tv| 2&v2), a.e. in (x, v) # 0_R3

(4.50)

The bound (4.50) together with the absolute continuity of mild solutions f n
i

in t, a.e. in (x, v) # 0_R3, implies that ( f n
i log f n

i )* (t, x, v) are absolutely
continuous in t, a.e. in (x, v) # 0_R3, i=1, 2, 3, 4. This means that the
identity

|
T

0

d
dt

( f n
i log f n

i )* (t) dt

=( f n
i log f n

i )* (T )& f n
i0 log f n

i0 , a.e. in (x, v) # 0_R3 (4.51)

356 Polewczak



is true. The mild solution f n
i satisfies for i=1, 2, 3, 4 and a.e. in

(x, v) # 0_R3

d
dt

( f n
i )*=J E

in([ f n
i ])*&J R

in([ f n
i ])*, a.e. in t (4.52)

After multiplying (4.52) by 1+(log f n
i )*, summing over i and integrating

over 0_R3, and finally using (4.51) together with Remark 8, one obtains
the corresponding H-theorem (3.27) for the approximate problem (4.34).
Thus, we have shown that the approximate solutions f n

i �0 satisfy (4.2),
uniformly in n.

Step 2. Velocity averaging Lemma 4.1 applied to f n$
i =(1�$) log

(1+$f N
i ), together with Lemmas 4.2�4.3, implies that, after passing to a

subsequence, if necessary,

|
R 3

,f n
i dv ww�

n � � |
R3

,fi dv strongly in L1((0, T )_0), i=1, 2, 3, 4

(4.53)

where fi is a weak limit of [ f n
i ]�

n=1 in L1((0, T )_0_R3).

Step 3. Following very similar steps as for the original single specie
Boltzmann equation (see, refs. 8 or 14), one shows, with the help of (4.53),
the following averaged continuity of collision integrals that hold for all
, # L�((0, T )_0_R3) and i=1, 2, 3, 4,

1
(1+�4

m=1 �R 3 f n
m dv) |

R 3
,J E\

in ([ f n
i ]) dv

ww�
n � �

1
(1+�4

m=1 �R 3 fm dv) |
R 3

,J E\
i ([ fi ]) dv in L1((0, T )_0)

(4.54)

and

1
(1+�4

m=1 �R 3 f n
m dv) |

R 3
,J R\

in ([ f n
i ]) dv

ww�
n � �

1
(1+�4

m=1 �R 3 fm dv) |
R 3

,J R\
i ([ f i ]) dv in L1((0, T )_0)

(4.55)

357Kinetic Theory of Simple Reacting Spheres



Remark 9. The averaged continuity (4.54)�(4.55) is also true for the
original collision integrals J E\

i and J R\
i , and for a sequence of renor-

malized solutions to (3.1), [ f n
i ], satisfying (4.2), uniformly in n.

The convergence in (4.54)�(4.55) together with the nonnegativity of f n
i

also implies for , # L�((0, T )_0_R3) and any r>0,

Lin([ f n
i ]) ww�

n � �
Li ([ f i ])

in L1(0, T )_0), i=1, 2, 3, 4 (4.56)

|
R 3

,J E+
in ([ f n

i ]) dv ww�
n � � |

R3
,J E+

i ([ f i ]) dv

in measure on (0, T )_0r , i=1, 2, 3, 4 (4.57)

|
R 3

,J R+
in ([ f n

i ]) dv ww�
n � � |

R3
,J R+

i ([ fi ]) dv

in measure on (0, T )_0r , i=1, 2, 3, 4 (4.58)

where

0r={Br ,
0,

if 0=R3

if 0=[0, L]3

The passage to the limit is obtained in two steps. First, using similar
techniques as in the proofs of (4.54)�(4.55) (see, refs. 8 or 14) together with
the monotonicity property of J E\

in and J R\
in one shows that the function

[ fi ] satisfies the inequality (super-solution property of [ fi ])

f *
i (t, x, v)& f *

i (s, x, v) exp[&[F*
i (t)&F*

i (s)]]

�|
t

s
[J E+

i ([ fi ])+J R+
i ([ fi ])]* ({, x, v) exp[&[F*

i (t)&F*
i ({)]] d{

(4.59)

for any 0<s<t�T and a.e. in (x, v) # 0_R3, i=1, 2, 3, 4. Finally, by
observing that for i=1, 2, 3, 4, $>0, n�1

( f n$
i )* (t, x, v)&( f n$

i )* (s, x, v)

=|
t

s \_
J E+

in ([ f n
i ])

1+$f n
i &

*

&_ f n
i

1+$f n
i &

*

Lin([ f n
i ])*+ d{ (4.60)
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and using (4.56), the weak convergence of f n$
i to f $

i , the weak convergence
of [J E+

in ([ f n
i ])]�(1+$f n

i ) and hn$
i = f n

i �(1+$f n
i ) to some J $

i and h$
i ,

respectively, we obtain, after taking the weak limit in (4.60) as n � �,

( f $
i )* (t, x, v)&( f $

i )* (s, x, v)

=|
t

s
[(J $

i )*&(h$
i )* Li ([ f i ])* d{,

a.e. in (x, v) # 0_R3, i=1, 2, 3, 4 (4.61)

From (4.29), ( f $
i )* ww�

$ � 0+ ( fi )
* in L1(0_R3), uniformly in t # [0, T ].

Furthermore, since for R>0,

0�z&
z

1+$z
�$zR+z/z�R (4.62)

and [ f n
i ] is weakly relatively compact, one has

sup
0�r�T

& f i&h$
i &L1(0_R 3)� sup

0�t�T
lim inf

n � �
& f n

i &hn$
i &L1(0_R3) ww�

$ � 0+ 0

(4.63)

Finally, since h$
i A fi as $ a 0+, the monotone convergence theorem implies

(sub-solution property of [ fi ])

f *
i (t, x, v)& f *

i (s, x, v)�|
t

s
[J E

i ([ fi])* ({, x, v)+J R
i ([ f i])* ({, x, v)] d{

(4.64)

for 0�s�t�T, i=1, 2, 3, 4, and a.e. in (x, v) # 0_R3, if one can show
that

J$
i �J E+

i ([ fi ])+J R+
i ([ f i ]) a.e. in (t, x, v) # (0, T )_0_R3

(4.65)

Proof of (4.65) follows from the nonnegativity of J E+
in and J R+

in , and the
application of the averaged continuity property (4.54)�(4.55). (see refs. 8 or
14).

Remark 10. Super-solution property (4.59) of [ fi ] together with
monotonicity in t of Fi (t) implies that for each T>0 and a.e. in
(x, v) # 0_R3, J E+([ fi ]), J R+

i ([ f i ]) # L1(0, T ). The last fact combined
with the sub-solution property (4.64) of [ fi ] shows that J E&

i ([ fi]),
JR&

i ([ f i]) # L1(0, T ).
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Step 4. The functions F*
i (t) defined in (4.47) is absolutely con-

tinuous in t for almost all (x, v) # 0_R3 and dF*
i �dt=Li[ fi ])*, a.e. in

t. The sub-solution property (4.64) of [ fi ] yields absolute continuity of f *
i

in t, for almost all (x, v) # 0_R3. Thus, f *
i exp F*

i is also absolutely con-
tinuous in t, for almost all (x, v) # 0_R3 and from super-solution property
(4.59) we obtain for i=1, 2, 3, 4,

d
dt

( f *
i exp F*

i )�[J E+
i ([ f i ])*+J R+

i ([ f i ])*]exp F*
i a.e. in t,

for almost all (x, v) # 0_R3 (4.66)

or, for i=1, 2, 3, 4,

d
dt

f *
i �J E

i ([ fi ])*+J R
i ([ fi ])* a.e. in t,

for almost all (x, v) # 0_R3 (4.67)

For i=1, 2, 3, 4, the inequality (4.67) is equivalent to

f *
i (t)& f *

i (s)�|
t

s
[J E

i ([ fi ])*+J R
i ([ fi ])*] d{

for 0�s�t and for almost all (x, v)0_R3

(4.68)

Combination of (4.68) and (4.64) shows that [ fi ] is a mild solution of
(3.1).

For the continuity property of [ fi ] we notice that (4.60) yields for
i=1, 2, 3, 4, 0�s�t�T and $>0

&( f n$
i )* (t)&( f n$

i )* (s)&L1(0_R3)�|
t

s "
J E+

in ([ f n
i ])

1+$f n
i "L1(0_R 3)

d{ (4.69)

Now, application of (4.69) together with (4.28) shows that for each &>0
there exists {>0 such that for |t&s|�{, and uniformly in n, one has

& f n*
i (t)& f n*

i (s)&L1(0_R3)�& (4.70)

After passing to the limit in (4.70) and observing that a norm is lower
semicontinuous, one has f *

i # C([0, T ]; L1(0_R3)), i=1, 2, 3, 4. Since
the strongly continuous semigroup U(t) is jointly continuous, one also
has that fi # C([0, T ]; L1(0_R3)), i=1, 2, 3, 4. Note that for f =
( f1 , f2 , f3 , f4), f *(t, x, v)=(U(&t) f )(t, x, v). K
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Remark 11. The mild solution obtained in Theorem 4.2 obeys the
conservation of mass and momentum (3.20)�(3.21). Instead of the conser-
vation of energy property (3.22), one obtains

:
4

i=1
||

0_R3
\m iv2

2
+Ei+ fi (t, x, v) dv dx

� :
4

i=1
||

0_R 3
\mi v2

2
+Ei+ fi0(x, v) dv dx (4.71)

This is due to lack of higher moments estimations for J E
i and J R

i , and the
fact the basic estimation (4.2) (see also Remark 7) guarantees weak com-
pactness of the sequence [(1+|x|k+|v|k) f n

i ] in L1((0, T )_0_R3) for
0�k<2, not including k=2.

I note that when the steric factors ;ij=0 for i, j=1, 2, 3, 4, system
(3.1) reduces itself to the hard-sphere Boltzmann equation for non-reacting
mixtures. Thus, we also have

Corollary 4.1. Assume that the assumptions of Theorem 4.2 are
satisfied and, in addition, ;ij=0 for i, j=1, 2, 3, 4. Then there exists a non-
negative mild solution fi to the hard-sphere Boltzmann equation for non-
reacting mixtures, with f i # C([0, T ]; L1(0_R3)) satisfying (4.3), and such
that fi (t) | t=0= fi0 , for i=1, 2, 3, 4.
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